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Summary. Missing values appear very often in many applications, but the problem of missing values has not received much
attention in testing order-restricted alternatives. Under the missing at random (MAR) assumption, we impute the missing
values nonparametrically using kernel regression. For data with imputation, the classical likelihood ratio test designed for
testing the order-restricted means is no longer applicable since the likelihood does not exist. This article proposes a novel
method for constructing test statistics for assessing means with an increasing order or a decreasing order based on jackknife
empirical likelihood (JEL) ratio. It is shown that the JEL ratio statistic evaluated under the null hypothesis converges to a
chi-bar-square distribution, whose weights depend on missing probabilities and nonparametric imputation. Simulation study
shows that the proposed test performs well under various missing scenarios and is robust for normally and nonnormally
distributed data. The proposed method is applied to an Alzheimer’s disease neuroimaging initiative data set for finding a
biomarker for the diagnosis of the Alzheimer’s disease.
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1. Introduction

Order-restricted hypothesis testing problems are often
encountered in many applications such as medical research,
clinical trials and animal and plant breeding. In clinical
trials, one is often interested in finding biomarkers for the
diagnosis of different stages of a disease, so that doctors could
prescribe appropriate treatments for patients. For example,
Alzheimer’s disease (AD) is an irreversible and progressive
brain disorder, and is the most common type of dementia.
In the ongoing Alzheimer’s Disease Neuroimaging Initiative
(ADNI) longitudinal study (http://www.adni-info.org/),
scientists are interested in identifying biomarkers to differ-
entiate three progressive stages of the AD: cognitive normal
(CN), late mild cognitive impairment (LMCI), and AD.
A biomarker that can be used for the diagnosis should be
responsive to different stages of the disease. More specifically,
one may wish to test whether the value of a biomarker is
increasing or decreasing as the disease progresses. One of the
important biomarker candidates in the ADNI study is the
cerebral metabolic rates of glucose (CMRglc), a proxy for
neuronal activity in AD (Mosconi et al., 2010). The CMRglc
is measured by fluorodeoxyglucose (FDG) positron emission
tomography (PET) scanning in the ADNI study. A larger
FDG value usually indicates a higher level of CMRglc, which
is associated with higher neural activity level. The motivation
of this article is to determine if CMRglc is an appropriate
biomarker for the diagnosis of the progression of AD. To
be more specific, assume that yij is the FDG value for the
j-th patient in the i-th group where i = 1 for AD, i = 2 for
LMCI, and i = 3 for CN and assume that E(yij) = θi. To find
out if CMRglc is an appropriate biomarker, one might be

interested in testing the following hypothesis

H0 : θ1 = θ2 = θ3 vs. H1 : θ1 ≤ θ2 ≤ θ3

with at least one strict inequality holds. (1)

The above alternative indicates that the mean of FDG
increases as AD gets less severe. Rejecting the null hypothesis
means that CMRglc is a good biomarker for AD.

One difficulty in testing the above hypothesis in the ANDI
data set is the large number of missing values. Consider-
ing the data collected between 2005 and 2007, more than
50% of data were missing for each group (AD, LMCI, and
CN). Simply deleting the subjects with missing values will
result in a significant loss of data and will lead to ineffi-
cient or biased statistical inference (Kim and Shao, 2013).
Imputation is a common approach to deal with missing val-
ues. Commonly used imputation methods include multiple
imputation (Rubin, 1987), hot deck imputation (Fuller and
Kim, 2005) and nonparametric kernel regression imputation
(Cheng, 1994). In this article, we consider applying the kernel
regression to impute the missing values due to its robustness.
To the best of our knowledge, no formal method has been
developed for testing order restricted hypothesis (1) when
part of the data are missing and replaced by imputed values.
This motivates us to develop a method for testing the order-
restricted hypothesis in (1) for data sets with imputation.

For data without missing values, the hypothesis testing
in (1) has been well studied in the literature. Bartholomew
(1959a,b, 1961a,b) proposed likelihood ratio tests for the
above problem. Under the normality assumption, it was
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shown that the likelihood ratio test statistic for monotonic
alternatives follows a chi-bar-square distribution. Some of
recent work on order-restricted inference using likelihood ratio
test includes Nettleton (1999, 2009). An excellent review on
order-restricted inference can be found in Sivapulle and Sen
(2004). However, after the nonparametric imputation, the
imputed data do not have a likelihood and hence the para-
metric likelihood ratio-based methods are not applicable. To
relax the parametric distribution assumption in the likeli-
hood ratio test, one could consider using empirical likelihood
(EL) method, which is a nonparametric likelihood proposed
by Owen (1988, 1990) and does not need any parametric
distribution assumption on the data. On one hand, for test-
ing omnibus alternatives without order restrictions, EL has
been applied to data with nonparametric imputation, which
include Wang and Rao (2002) and Wang and Chen (2009).
Both results show that the EL ratios for imputed data are
asymptotically distributed as a linear combination of chi-
squares rather than a standard chi-square distribution. On
the other hand, for testing order restricted alternatives with-
out missing values, El Barmi (1996) ingeniously applied EL
method to construct test statistics. Without assuming a spe-
cific distribution for data, they have shown that the EL ratio
test statistic has the same asymptotic chi-bar-square distribu-
tion as the parametric likelihood ratio test statistic. Recently,
Davidov et al. (2010, 2014) applied EL to order-restricted
semi-parametric inference. However, all the above mentioned
procedures either fail to consider order-restricted alternatives
or do not consider the problem of missing values. Thus, we are
not able to apply the existing procedures to the ANDI study.

A major obstacle that prevents the extension of EL to
test order-restricted alternatives for data with nonparametric
imputation is the difficulty in obtaining the asymptotic distri-
bution of the test statistic. In order to obtain the asymptotic
distribution of the EL-based test statistic for order-restricted
alternatives, one of the key steps is to show the asymptotic
independence between the projected EL statistics and the
event of the projection. However, we find that the asymp-
totic independence can not be established for the EL-based
methods. Therefore, it is difficult to obtain the asymptotic
distribution of the EL-based methods.

This article introduces a novel Jackknife EL (JEL) ratio
method for testing hypothesis (1). JEL was first introduced
by Jing et al. (2009) to overcome the computation difficulty in
EL due to the nonlinear estimating equations. In this article,
we extend the use of JEL to test order-restricted alterna-
tives for data with nonparametric imputation. We found that,
under the null hypothesis, the proposed JEL ratio statistics
still have a chi-bar-square distribution. But the weights of
the chi-bar-square distribution depend on missing probabil-
ities and nonparametric imputation. The result is valuable
in the following two aspects. First, by combining the EL
and Jackknife pseudo values, deriving the asymptotic distri-
bution of JEL ratio statistic becomes feasible, which turns
out to be asymptotically chi-bar-square distribution; Second,
it provides a simple and formal procedure for testing order-
restricted hypothesis for data with nonparametric imputation,
which has not been considered in the existing literature.

The rest of this article is organized as follows. In Section
2, we introduce the basic setup and the problem of interest.

JEL ratio statistic is presented in Section 3. The asymptotic
null distribution is provided in Section 4. Extensive simulation
studies are provided in Section 5. In Section 6, we applied our
proposed procedure to the ADNI data set mentioned at the
beginning of the introduction. Some concluding remarks are
given in Section 7. All the technical details and additional sim-
ulation results are relegated to the web-based supplementary
material.

2. Basic Setting and Hypothesis of Interest

Let yij be the univariate quantitative measurement for the j-th
subject in the i-th group, where i = 1, . . . , k and j = 1, . . . , ni.
Let δij be the indicator of nonmissingness such that δij = 1
if yij is observed and δij = 0 if yij is missing. In this study,
we assume missing at random (MAR), which assumes that,
given a d-dimensional covariate xij, yij is independent of the
non-missing indicator δij, that is,

P(δij = 1|xij, yij) = P(δij = 1|xij) := Ri(xij).

We use the triplet (yij, xij, δij) to denote all the data we
observed for the j-th individual within the i-th group, i =
1, . . . , k, j = 1, . . . , ni. We impute the missing value nonpara-
metrically using a nonparametric regression (Cheng, 1994;
Wang and Rao, 2002; Zhong and Chen, 2014). Specifically,
we replace the missing values yij by the Nadaraya–Watson
(NW) estimator m̂i(xij) for mi(xij) = E(yij|xij), where m̂i(xij)
is defined by

m̂i(xij) =
∑ni

j′=1,j′ �=j
δij′yij′Khi

(xij, xij′)∑ni

j′=1,j′ �=j
δij′Khi

(xij, xij′)
. (2)

Here, Khi
(xij, xij′) = h−d

i K
{
(xij − xij′)/hi

}
, and K is a kernel

function and hi’s are bandwidths. When the dimension of
covariates d is large, the NW imputation might be affected by
the curse of dimensionality. In this case, we propose to use a
nonparametric additive regression model to perform the non-
parametric imputation. The details of the extension and some
simulation experiments are provided in the web Appendix C
of the web-based supplementary material.

Suppose yij’s are independent identically distributed (IID)
random variables generated from some distribution F i (i =
1, . . . , k). Assume θi = E(yij) (j = 1, . . . , ni) is the mean value
for the measurements yij’s from the i-th group. The aim of
this article is to test

H0 : θ1 = θ2 = · · · = θk vs. H1 : θ1 ≤ θ2 ≤ · · · ≤ θk

with at least one strict inequality holds, (3)

when the missing responses are imputed using the nonpara-
metric kernel regression.

3. Jackknife EL Ratio Statistics

We consider JEL ratio statistics for testing (3). To this end,
we first define the pseudo-values for estimating θi’s. Based on
the observed yij’s with δij = 1 and the imputed m̂i(xij)’s when
δij = 0 (i = 1, . . . , k; j = 1, . . . , ni), a consistent estimate of the
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group mean θi is

θ̂i = 1

ni

ni∑
j=1

{δijyij + (1 − δij)m̂i(xij)} for i = 1, . . . , k. (4)

Let ỹij be the response after imputation, that is, ỹij = yij if

δij = 1, and ỹij = m̂i(xij) if δij = 0. Then θ̂i = ∑ni

j=1
ỹij/ni is an

average of the response after imputation.
Following Zhong and Chen (2014), we define jackknife

pseudo-values νij’s as νij = niθ̂i − (ni − 1)θ̂
(−j)
i , i = 1, . . . , k,

j = 1, . . . , ni, where θ̂
(−j)
i is the estimate for θi defined by

(4) without using the j-th subject in the i-th group. If no
missing value exists, it is clear that νij = ỹij = yij. However,
if missing values exist, νij is not always equal to ỹij, which
shows the impact of missing values on the pseudo-values.
Specifically, if j corresponds to δij = 0, νij is asymptotically
the same as ỹij = m̂i(xij). But if j corresponds to δij = 1, νij

is asymptotically the same as yij + en(xij) but not the same
as ỹij = yij, where en(xij) = {(ni − 1)G(xij)}−1

∑ni

l=1,l �=j
(1 −

δij)δilKhi
(xil, xij){yij − mi(xij)} and G(x) = E{δij′Khi

(x, xij′)|x}.
The adjustment term en(xij) is important, which makes the
pseudo-values νij’s different from the imputed responses ỹij’s.

The JEL function for θi is defined (Jing et al., 2009; Zhong
and Chen, 2014) as

L(θi) = max
pij

{ ni∏
j=1

pij : pij > 0, j = 1, . . . , ni,

ni∑
j=1

pij = 1,

ni∑
j=1

pijνij = θi

}
.

Using the standard derivation, for a given θi, it can be shown
that the maximization of L(θi) is achieved at p̂ij = ni

−1{1 +
λi(θi)(νij − θi)}−1 for j = 1, . . . , ni, where λi(θi)’s are Lagrange
multipliers satisfying

∑ni

j=1
(νij − θi)/{1 + λi(θi)(νij − θi)} = 0.

Therefore, the log-JEL function for θi is

�i(θi) = −
ni∑

j=1

log{1 + λi(θi)(νij − θi)} − ni log(ni).

Because the k samples are independent, the log-JEL function
for θ = (θ1, θ2, . . . , θk)

T is �(θ) = ∑k

i=1
�i(θi). Then the log-JEL

ratio statistic for testing H0 against H1 in equation (3) is

log Rn = max
H0

�(θ1, . . . , θk) − max
H1

�(θ1, . . . , θk)

= min
H1

k∑
i=1

ni∑
j=1

log{1 + λi(θi)(νij − θi)}

−min
H0

k∑
i=1

ni∑
j=1

log{1 + λi(θi)(νij − θi)}.

It follows that the test statistic for testing H0 versus H1 can
be defined as �n = −2 log Rn.

Next, we wish to make the JEL ratio test (JELRT) statis-
tic �n more explicitly computable. Under the null space
H0 : θ1 = θ2 = · · · = θk, θi’s have a common value θ0, which
can be estimated by the maximum JEL estimator (MJELE)
θ̂0, where

θ̂0 = arg min
θ0

k∑
i=1

ni∑
j=1

log{1 + λi(θ0)(νij − θ0)}.

The corresponding λ̂i := λi(θ̂0) satisfies
∑ni

j=1
(νij − θ̂0)/{1 +

λ̂i(νij − θ̂0)} = 0. Similar to Qin and Lawless (1995), it can
be shown that in a neighborhood of the true value of θ0, there
almost surely exists a unique minimizer θ̂0 that minimizes the
objective function −�(θ).

To obtain MJELE under the alternative space H1 : θ1 ≤
θ2 ≤ · · · ≤ θk, we introduce Lagrange multipliers α1, . . . , αk−1

and define a new function f (θ1, . . . , θk, α1, . . . , αk−1) =
−�(θ1, . . . , θk) − ∑k−1

i=1
αi(θi+1 − θi). Then the minimizer θi’s

(i = 1, . . . , k) and αj’s (j = 1, . . . , k − 1) of the function f sat-
isfy the following Karush–Kuhn–Tucker conditions:

−∂�(θ)

∂θi

+ αi − αi−1 = 0, αj(θj+1 − θj) = 0, and αj ≥ 0,

where α0 = 0 and αk = 0. There are 2k − 1 equations in
the above estimating equations. Denote the minimizer for
θ1, . . . , θk as θ̃1, . . . , θ̃k, and they are the MJELE’s for θ1, . . . , θk

under H1. Similar to the null case, the corresponding solutions
for λi’s under H1 are defined as λ̃i := λi(θ̃i). Therefore, the JEL
ratio test statistic for H0 versus H1 is

�n = 2

k∑
i=1

ni∑
j=1

[
log{1 + λ̂i(νij − θ̂0)} − log{1 + λ̃i(νij − θ̃i)}

]
.

4. Asymptotic Null Distribution of �n

In this section, we present the asymptotic distribution of
�n under the H0. For convenience, we rewrite the alterna-
tive hypothesis as H1 : Aθ ≤ 0 where A = (a1, . . . ,ak−1)

T is
a (k − 1) × k matrix and al = (0, . . . , 0, 1, −1, 0, . . . , 0)T (1 ≤
l ≤ k − 1) is a k-dim vector whose l and l + 1 components are
1 and −1, respectively. Let F be the collection of all the sub-
sets of {1, . . . , k − 1} and π be any set in F with cardinality
|π| ≤ k − 1. Define A(π) as a submatrix of A with rows deter-
mined by the set π. So A(π) is a |π| × k matrix. For example,
if k ≥ 3 and π0 = {1, 2}, A(π0) is defined as A(π0) = (a1,a2)

T .
Now, denote the θ̃(π) as the MJELE of θ under the constraints
H1(π) : A(π)θ = 0. Meanwhile, define �n(π) as the JELRT for
testing H0 versus H1(π). Specifically,

�n(π) = 2

k∑
i=1

ni∑
j=1

[
log{1 + λ̂i(νij − θ̂0)}

− log{1 + λ̃i(π)(νij − θ̃i(π))}
]
.
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According to El Barmi (1996) or Wollan and Dykstra
(1986), θ̃ equals θ̃(π) for one specific π ∈ F . This implies that,
for any t,

P(�n ≥ t) =
∑
π∈F

P{�n ≥ t|θ̃ = θ̃(π)}P{θ̃ = θ̃(π)}

=
∑
π∈F

P{�n(π) ≥ t|θ̃ = θ̃(π)}P{θ̃ = θ̃(π)}, (5)

where the second equality is true due to the fact that �n =
�n(π) under the condition θ̃ = θ̃(π). The equation (5) is the
key for obtaining the asymptotic distribution of �n under H0.
Combining equation (5) with the following Theorems 1 and
2, we can obtain the asymptotic distribution of �n.

Denote N = ∑k

i=1
ni as the total of the sample sizes and the

proportion as ρi = limN→∞ ni/N. Assume that ρi is a positive
constant.

Theorem 1. Under conditions (C1)–(C4) in the web
Appendix A of the supplementary material, we have
limN→∞ P{�n(π) ≥ t|θ̃ = θ̃(π)} = P(χ2

k−1−|π| ≥ t) where χ2
k−1−|π|

denotes a chi-square distribution with degrees of freedom
k − 1 − |π|.

The proof of Theorem 1 is provided in the web Appendix
A of the supplementary material. Theorem 1 implies that the
event {�n(π) ≥ t} is asymptotically independent of the event
{θ̃ = θ̃(π)}. Moreover, the asymptotic distribution of �n(π) is
a chi-square distribution with degrees of freedom k − 1 − |π|.
The results in Theorem 1 have shown to be true for EL ratio
statistics for data without missing values (El Barmi, 1996).
Our results indicate that such results also hold for JEL ratio
statistics for data with nonparametric imputation.

Remark 1. The asymptotic distribution of the test statistic
�n crucially depends on the asymptotic independence between
{�n(π) ≥ t} and {θ̃ = θ̃(π)}. However, the asymptotic indepen-
dence does not hold for EL-based test statistics. A detailed
discussion of this point is provided in the web Appendix B of
the supplementary material.

Combining Theorem 1 with equation (5), we have

lim
N→∞

P(�n ≥ t) = lim
N→∞

∑
π∈F

P{θ̃ = θ̃(π)}P(χ2
k−1−|π| ≥ t). (6)

In the following Theorem 2, we evaluate the asymptotic
probability of the event {θ̃ = θ̃(π)}. To this end, we define
some notation. For i = 1, . . . , k, let σ2

i = E{σ2
i (x)/Ri(x)} +

Var{mi(x)}, where σ2
i (x) = Var(yij|x), E(yij|x) = mi(x) and

Ri(x) are the conditional missing probability defined in Sec-
tion 2.1. Define V = Diag(σ2

1/ρ1, . . . , σ
2
k /ρk). If π = ∅, define

p1(π) = P{MVN(0, �1(π)) ≥ 0} and p2(π) = 1, where MVN
represents a multivariate normal distribution and �1(π) =
AVAT . For any π �= ∅ and π �= {1, . . . , k − 1}, define p1(π) =
P{MVN(0, �1(π)) ≥ 0} and p2(π) = P{MVN(0, �2(π)) ≥ 0}
where �1(π) = {A(π)VAT (π)}−1 and �2(π) = A(πc){V −
VAT (π)�1(π)A(π)V }AT (πc), where πc is the complement set
of π.

Theorem 2. Under conditions (C1)–(C4) in the web
Appendix A of the supplementary material, for any π �=
{1, . . . , k − 1}, we have limN→∞ P{θ̃ = θ̃(π)} = p1(π)p2(π),
where p1(π) and p2(π) are defined above. Moreover, the JEL
ratio statistic �n has the following asymptotic distribution
under H0,

lim
N→∞

P(�n ≥ t) =
k−1∑
j=0

wjP(χ2
k−1−j ≥ t), (7)

where wj = ∑
|π|=j

p1(π)p2(π) for 0 ≤ |π| = j < k − 1 and

wk−1 = 1 − ∑k−2

j=1
wj.

The asymptotic results in Theorem 2 seem to be similar
to the results obtained for likelihood ratio statistics and EL
ratios for data without imputations in El Barmi (1996). But
they are actually different distributions since the weights in
the chi-bar-square distribution are different from that in El
Barmi (1996). Due to missing values, the weights wj in equa-
tion (7) depend on σ2

i ’s, which is a function of the missing
probabilities Ri(x) and variances of the conditional mean of
the imputed values mi(x). For different imputation methods,
the asymptotic variances of pseudo values are different. As a
result, the asymptotic distributions of the JEL test statistics
are different if different imputation methods are applied. Sim-
ilar phenomena have been found by Wang and Rao (2002),
and Wang and Wang (2006). They demonstrated that the
asymptotic distributions of EL ratio statistics for testing the
omnibus alternatives are different for data with parametric
and nonparametric imputation. In the ideal case, if the miss-
ing probability is 0, σ2

i = Var(yij), then our result is the same
as that obtained in El Barmi (1996). Moreover, our result is
derived for the JEL ratios rather than the EL ratios. If the
EL ratio is used, the asymptotic distribution would be very
difficult to obtain as we discussed in Remark 1.

Let us consider a special case with k = 3, n1 = n2 = n3 = n

and σ2
1 = σ2

2 = σ2
3 = σ2. Then V = Diag(3σ2, . . . , 3σ2). If π =

∅, it can be checked that

AVAT = 3σ2

(
2 −1

−1 2

)
.

As a result, p1(π) = 1/6 and w0 = 1/6. If π = {1} or π = {2},
then it can be easily shown that p1(π) = p2(π) = 1/2. Then,
w1 = 1/4 + 1/4 = 1/2. Thus, w2 = 1 − w0 − w1 = 1/3. In this
case, the null distribution of the JEL ratio test statistic fol-
lows a chi-bar-square distribution, that is, χ̄2 = (1/6)χ2

2 +
(1/2)χ2

1 + (1/3)χ2
0, where χ2

0 is the degenerate random vari-
able taking value 0. In this case, we reject the null hypothesis
if �n > χ̄2

α, where χ̄2
α is the upper α-quantile of χ̄2 distribu-

tion. In general case, the weights wj’s do not have a simple
form. The α-quantile of the chi-bar-square distribution can be
obtained by using simulation.

5. Simulation Study

In this section, we present a series of simulation studies
designed to demonstrate finite sample performance of the
proposed JEL ratio test. Additional simulation results are
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presented in the web Appendix D of supplementary material,
where we compared the proposed method with a test based
on the asymptotic normality of θ̂i’s and a JEL ratio test using
parametric imputation.

We simulated independent random variables yij from nor-
mal distribution with mean θi + axij and variance 1 for three
groups (i = 1, 2 and 3) and j = 1, . . . , ni. The nonmissing indi-
cators δij were generated from a Bernoulli distribution with
mean pij where pij = exp(tij)/{1 + exp(tij)} and tij = b0 + 2xij.
The covariates xij were generated from the standard normal.

First, we considered a balanced case where the sample sizes
ni (i =1, 2, 3) were the same across three treatment groups
(i.e., n1 = n2 = n3 = n). In addition, we assumed b0 to be the
same among three groups. In the simulation, we chose n =
100, 200, and 400. To check the impact of missing values,
two values for b0 were used. Specifically, b0 = 0.5 and 1 were
used. When b0 = 0.5, the missing probability was around 43%.
When b0 = 1, the missing probability was around 35%. For
the balanced case, according to the special case discussed after
Theorem 2, the null distribution of the JEL ratio test statistic
follows a chi-bar-square distribution, that is χ̄2 = (1/6)χ2

2 +
(1/2)χ2

1 + (1/3)χ2
0.

For evaluating the empirical size of the proposed test, we set
θ1 = θ2 = θ3 = 0 under the null hypothesis. For evaluating the
power of the test, we designed three alternative scenarios sat-
isfying θ1 < θ2 < θ3: scenario A: θ1 = 0, θ2 = 0.125, θ3 = 0.25;
scenario B: θ1 = 0, θ2 = 0.25, θ3 = 0.5; and scenario C: θ1 =
0, θ2 = 0.5, θ3 = 1. All the simulation results reported in this
section were based on 1000 simulation replicates. The nominal
level was 0.05 for all the tests.

To demonstrate the impact of imputation on the existing
methods for testing order restricted hypothesis, we compared
the proposed method with the likelihood ratio (LR) test
(Bartholomew, 1961a) and the EL ratio test (El Barmi, 1996)
without considering the missing values. Namely, we applied
the LR test and EL ratio test by considering the imputed
values as observed data.

Table 1 summarizes the empirical sizes and powers of the
proposed test, and the empirical sizes of the LR test and EL
ratio test. We observe that the imputation has a big impact
on the performance of the LR test and EL ratio test. As we
can see from Table 1, the empirical sizes of the LR test and EL
ratios test are quite far away from the nominal level 0.05. The
results are not surprising because Bartholomew (1961a) and
El Barmi (1996)’s methods are designed for data sets without
missing values. These results demonstrate that considering
imputation is necessary and imputed values can not be treated
as the observed values.

On the other hand, we observe that the proposed JEL
method controls type I error well around the nominal level
for both b0 = 0.5 and b0 = 1. Under the alternatives, the
power of JEL method increases as n increasing from n = 100
to n = 400. The power also increases from scenario A to
scenario C, since the distance between the alternatives and
null increases. The bandwidths in the simulation are chosen
according to hi = cin

−11/40
i , which satisfies the condition (C2)

in the web Appendix A of the supplementary material and
ci = cσ̂xi

where σ̂xi
is the sample standard deviation of xij’s

within the i-th group. Here, c is a constant between 2 and 4.
The proposed method is not very sensitive to the choice of

Table 1
Empirical sizes and powers for the proposed JEL method for

balanced data generated from normal distributions

Size JEL power

n a LR EL JEL A B C

100 0.6 0.269 0.314 0.056 0.161 0.337 0.805
100 0.8 0.234 0.280 0.051 0.146 0.336 0.793
200 0.6 0.254 0.310 0.049 0.234 0.555 0.976

b0 = 0.5
200 0.8 0.261 0.317 0.048 0.222 0.520 0.960
400 0.6 0.142 0.216 0.049 0.361 0.791 1.000
400 0.8 0.151 0.233 0.054 0.343 0.756 1.000

n a LR EL JEL A B C

100 0.6 0.123 0.208 0.048 0.171 0.369 0.839
100 0.8 0.161 0.252 0.052 0.156 0.367 0.813
200 0.6 0.227 0.272 0.057 0.243 0.588 0.986

b0 = 1 200 0.8 0.209 0.262 0.053 0.221 0.584 0.986
400 0.6 0.152 0.226 0.060 0.409 0.861 1.000
400 0.8 0.111 0.177 0.054 0.377 0.829 1.000

The empirical powers for the JEL method were evaluated under
three scenarios A, B and C defined above. The empirical sizes
for the likelihood ratio (LR) test and the EL ratio test are also
reported.

the constant c because the bandwidths do not have a leading
order impact on the mean squares of θ̂i and θ̃i (for i = 1, 2
and 3). The above phenomena are similar to those observed
in Zhong and Chen (2014).

To further evaluate the impact of missing values on the
classical LR test, we applied the LR test to the complete
data with missing values removed from the original data sets.
The data were generated according to the same model as that
used in Table 1 with b0 = 0.5. We compared the LR test with
the proposed JEL test under the null hypothesis for evaluat-
ing the empirical sizes. The results were demonstrated using
quantile-quantile plots in Figure 1. In the left panel of Fig-
ure 1, we plotted the quantile of LR test statistics for data
with missing values deleted, versus the theoretical quantile
for LR test statistics obtained by Bartholomew (1961a) where
missing values were not considered. As we observed from the
left panel of Figure 1, these two quantiles were quite far away
from each other. These results indicated that the missing val-
ues have significant impact on the LR test and we cannot
simply delete the missing values. On the other hand, we can
see that our proposed JEL method performed reasonably well
as demonstrated in right panel of Figure 1.

Next, we considered simulations with unbalanced samples
and different missing probabilities among three samples. First,
we considered six unbalanced combinations for (n1, n2, n3):
(100, 100, 200), (200, 100, 100), (100, 100, 400), (400, 100,
100), (100, 200, 300), and (300, 200, 100). Secondly, different
missing probabilities were considered across three groups. For
a higher missing probability setting, the b0’s for the three
groups were 0.25, 0.5, and 1, so the missing probabilities were
around 46, 43, and 35%, respectively. For a lower missing
probability setting, the b0’s were 0.5, 1, and 2, so the missing
probabilities for the three groups were around 43, 35, and
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Figure 1. Quantile-quantile (QQ) plots of LR test with the missing values deleted (left panel) and the QQ plot of the
proposed JEL test for data with imputation (right panel).

23%, respectively. The alternatives scenarios were the same as
the alternatives in the balanced case. Namely, we considered
three scenarios A, B, and C for evaluating the power of the
proposed test.

Because neither LR test nor EL ratio test maintained the
nominal level correctly in the balanced situation, we only con-
sidered JEL ratio test in the simulations with unbalanced
samples. The asymptotic distribution of the proposed JEL
ratio test was derived in Theorem 2, but the weights wj do
not have a simple expression. Therefore, we used computa-
tional method to estimate the weights wj. The bandwidths
were chosen similarly to the balanced cases.

The simulation results for unbalanced cases are summa-
rized in Table 2. We can observe that the empirical type I
errors are well controlled under the null hypothesis. As the
differences between null and alternatives getting large, the
powers of the proposed test increased to 1. This demonstrates
the consistency of the proposed test.

To investigate the robustness of the proposed procedure
in terms of distributions of responses, we also considered
chi-square distributions in our simulation studies. Simi-
lar to the normal case, we considered the balanced and

unbalanced cases. In both situations, we used the similar sim-
ulation setups as the normal cases except that we changed
the distribution for generating the response. More specifi-
cally, the responses were generated using the model yij =
(θi + axij + εij)/

√
8. Here, xij are independent standard nor-

mal, which are independent of εij, and εij are centralized
chi-square distributed with degrees of freedom 4.

Table 3 summarizes the simulation results for balanced case
with data generated from chi-square distributions. The pro-
posed method was also compared with the LR test and the EL
ratio test. Similar to the observation in Table 1, the empirical
type I errors of the LR test and the EL ratio test were not
well controlled. However, the proposed method can still con-
trol the type I error well even the distribution is not normally
distributed any more. We can see that as the sample size
increased, the power of the proposed test increased. As the
alternatives deviated from the null, the powers of the proposed
test increased.

The simulation results for chi-square distributed random
variables with unbalanced samples are summarized in Table
4. The patterns in Table 4 are very similar to the patterns
in Table 2. However, it is worth pointing out that the pro-

Table 2
Empirical sizes and powers of JEL ratio test for order restricted hypothesis with unbalanced samples and different missing

probabilities among groups

Higher missing prob. Lower missing prob.

(n1, n2, n3) Size A B C Size A B C

(100, 100, 200) 0.050 0.340 0.772 1.000 0.055 0.343 0.802 1.000
(200, 100, 100) 0.058 0.415 0.847 1.000 0.051 0.402 0.846 1.000
(100, 100, 400) 0.056 0.348 0.804 1.000 0.047 0.401 0.853 1.000
(400, 100, 100) 0.073 0.535 0.935 1.000 0.055 0.530 0.943 1.000
(100, 200, 300) 0.048 0.378 0.812 1.000 0.042 0.425 0.857 1.000
(300, 200, 100) 0.064 0.473 0.927 1.000 0.049 0.460 0.920 1.000

The data are normally distributed in this table.
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Table 3
Empirical sizes and powers for the proposed JEL method for

balanced data generated from chi-square distributions

Size JEL power

n a LR EL JEL A B C

100 0.6 0.276 0.285 0.054 0.104 0.207 0.501
100 0.8 0.295 0.301 0.069 0.110 0.190 0.495
200 0.6 0.342 0.339 0.058 0.131 0.318 0.775

b0 = 0.5
200 0.8 0.332 0.347 0.063 0.120 0.297 0.742
400 0.6 0.236 0.220 0.056 0.206 0.505 0.932
400 0.8 0.232 0.226 0.052 0.193 0.471 0.935

n a LR EL JEL A B C

100 0.6 0.246 0.252 0.053 0.104 0.213 0.539
100 0.8 0.242 0.258 0.053 0.114 0.189 0.506
200 0.6 0.296 0.296 0.062 0.158 0.319 0.800

b0 = 1
200 0.8 0.273 0.295 0.048 0.154 0.316 0.794
400 0.6 0.243 0.235 0.060 0.216 0.519 0.968
400 0.8 0.193 0.185 0.050 0.230 0.515 0.973

The empirical powers for the proposed JEL method were evaluated
under three scenarios A, B and C defined above. The empirical
sizes for the likelihood ratio (LR) test and the EL ratio test are
also reported.

posed method can maintain the type I error correctly under all
the combinations of sample sizes with chi-square distributed
random variables.

6. An Application to ADNI Study

In this section, we apply our proposed method to the motiva-
tion example given in the introduction part. AD is a common
type of dementia, which decreases people’s memory, thinking,
and behavior abilities. ADNI is a longitudinal study initialed
in 2004 (Mueller, et al., 2005). One of the goals of this study is
to find out a biomarker for the diagnosis of the AD. The data
set we used includes 661 subjects enrolled between 2005 and
2007 with patients at different stages including AD, late mild
cognitive impairment (LMCI), as well as CN elderly controls.
The number of subjects in AD, LMCI, and CN are, respec-
tively, 204, 318, and 139. More details about the ADNI study
can be found at http://adni.loni.usc.edu.

The FDG-PET scanning provides brain imaging data that
measure patients’ CMRglc. It has been a widely used tech-

nique for early AD diagnosis for more than two decades
(Mosconi, et al., 2010; Johnson, et al., 2012). Our interest is
to test the significance of the monotonic changes among the
means of the FDG values for three groups. Specifically, let yij

be the FDG value for the j-th patient in the i-th group where
i = 1 for AD, i = 2 for LMCI, and i = 3 for CN. Assume that
E(yij) = θi. To confirm if CMRglc is an appropriate biomarker,
as discussed in the introduction, we are interested in testing
the following hypothesis

H0 : θ1 = θ2 = θ3 vs. H1 : θ1 ≤ θ2 ≤ θ3

with at least one strict inequality holds. (8)

The missing percentages for the FDG-PET scanning data
at the three stages (AD, LMCI, and CN) are around 79.4,
53.0, and 63.3%, respectively. The missingness is due to vari-
ous reasons. For example, some participants do not agree on
the consent of the PET scan, or have some specific exclusion
(e.g., a history of radiation therapy) to the PET scan. To
impute the missing values, we consider using the magnetic
resonance imaging (MRI) data and age information as covari-
ates. MRI is a principle component of the ADNI study that is
important for tracking the progression of AD, and MRI data
were observed for almost every patient.

A total of three volumes of brain regions measured by
MRI was utilized, which include the volumes of fusiform,
hippocampus, and the whole brain. These three brain region
volumes and age information were the candidate covariates.
In order to find the covariates associated with the miss-
ingness, we performed a logistic regression using the above
six covariates and the binary nonmissing indicators δij’s as
responses. A stepwise forward logistic regression was used to
select the best model. The final selected model with the small-
est AIC (AIC = 867.34) contained two covariates: the volumes
of hippocampus and fusiform regions. Therefore, we used the
volumes of hippocampus and fusiform areas as the covariates
for the nonparametric kernel imputation. More details about
the stepwise forward logistic regression are included in web-
based Appendix E. The covariate Age was not selected into
the imputation model. This might be partially due to the
fact that the volumes of the hippocampus and fusiform areas
have significant linear relationship with Age. The imputation
model was chosen based on the data set and information avail-

Table 4
Empirical sizes and powers of JEL ratio test for order restricted hypothesis with unbalanced samples and different missing

probabilities among groups

Higher missing prob. Lower missing prob.

(n1, n2, n3) Size A B C Size A B C

(100, 100, 200) 0.057 0.178 0.285 0.613 0.053 0.196 0.326 0.654
(200, 100, 100) 0.051 0.201 0.312 0.669 0.045 0.187 0.359 0.746
(100, 100, 400) 0.044 0.207 0.319 0.648 0.054 0.208 0.347 0.711
(400, 100, 100) 0.070 0.214 0.389 0.822 0.043 0.224 0.374 0.865
(100, 200, 300) 0.054 0.222 0.374 0.663 0.052 0.192 0.355 0.741
(300, 200, 100) 0.048 0.207 0.366 0.774 0.045 0.199 0.369 0.796

The data are chi-square distributed in this table.



Test for Order-Restricted Means with Missing Values 979

●

●

●

●

AD LMCI CN

4
5

6
7

8

F
D

G

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 20 40 60 80 100

0
10

20
30

40
50

60

Repetitions b=1,...,100

V
al

ue
s

●
test statsitcs values
95% cut−off values

Figure 2. Left panel: Side-by-side boxplots of the FDG values for patients that at different stages of the AD: AD, late mild
cognitive impairment (LMCI) and CN. Right panel: Test statistics values and the cutoff values among 100 repetitions.

able to us. If more information related to the missingness (e.g.,
participant’s consent for the PET scan) is available, it could
be incorporated to improve the imputation model.

To obtain some insight about the means θ1, θ2, and θ3, we
provide the box plots for values of yij for patients at three
different stages in left panel of Figure 2. It can be clearly
observed from the box plots that the means among three
groups change monotonically.

To formally test the hypothesis in equation (8), we applied
the proposed JEL ratio test. We randomly sampled around
86% of the individuals (n1 = 120, n2 = 275, and n3 = 176),
respectively, from the AD, LMCI, and CN groups and per-
formed the proposed JEL ratio test on each sampled data set.
We repeated the above procedure for 100 times, and obtained

the corresponding test statistic values �
(b)
n for b = 1, . . . , 100.

The test statistics values �
(b)
n ranged between 38.22 and 55.49.

The average and standard deviation of the 100 test statistics

�
(b)
n were, respectively, 45.61 and 3.96. To check the signif-

icance, the chi-bar-square distributions under the null were
generated using simulation. Specifically, for each sampled data
set, the pseudo-values were calculated, and σ2

i ’s were esti-
mated based on the variances of the pseudo-values νij’s. Then
the chi-bar-square weights wj’s can be obtained using numer-
ical integration. The upper 5% quantile of the chi-bar-square
distributions ranged between 3.29 and 4.18. We illustrate the
test statistics and cutoff values in the right panel of Figure 2.
From the plot, it is easy to see that all the test statistic values
are above the cutoff points. Therefore, JEL ratio test rejects
the null hypothesis for all the 100 random samples. Based
on the simulation results in Tables 1–3, the proposed method
maintained the type I error under various missing probabili-
ties but less powerful as the missing probability increased. In
this real data application, the null hypotheses were rejected
for all random samples even when the AD group had missing
probability as high as 79.4%. This might indicate that the

monotone relationship among θi’s was strong, and CMRglc
was a good biomarker for distinguishing different stages of
AD.

7. Concluding Remarks

In this article, we studied the problem of testing order
restricted means for data with nonparametric imputation. We
employed the jackknife EL ratio statistics to construct the
test statistics. The asymptotic distribution of the test statis-
tic was derived under the null hypothesis. It turns out the
asymptotic null distribution follows a chi-bar-square distri-
bution, which is very easy for implementation. The proposed
method is robust to the underlying distribution of the data.
No normality assumption is needed. The major contribution
of this article is on proposing a formal procedure for test-
ing order restricted means when part of the data are missing
and imputed using a nonparametric kernel regression. To the
best of our knowledge, no formal procedure in the litera-
ture considers the problem of missing values for testing order
restricted means. Our proposed procedure bridges this impor-
tant gap. Our simulation studies have demonstrated that the
proposed procedure is valid for various normally and nonnor-
mally distributed data, and is able to accommodate data with
nonparametric imputation.

We considered a nonparametric imputation method in this
article. As an alternative, one could consider a parametric
imputation method. The asymptotic distribution of the JEL
test statistic with parametric imputation could be derived
similarly. The JEL method with parametric imputation works
well if the parametric imputation model (i.e., the conditional
expectation of y given x) is correctly specified. However, the
derived asymptotic null distribution may not be valid for JEL
method with an incorrect imputation model. This is because
the asymptotic behaviors of jackknife pseudo values based on
an incorrect imputation model are different from that based
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on the correct imputation model. Some simulation results for
illustrating the JEL method with parametric imputation are
given in the web-based Appendix D.

Inverse weighting method (e.g., Kim and Shao, 2013) is
another popular method for handling missing values. If the
propensity score function is known or estimated, the EL ratio
test statistic with calibration based on the inverse weighted
estimating equations may be applied to the problems consid-
ered in this article. However, due to the focus of this article
is on data with imputation, we will investigate the inverse
weighting method for the order restricted inference in a future
project.

8. Supplementary Material

Web Appendices referenced in Sections 1–7 and the R code
for implementing the proposed method are available with this
article at the Biometrics website on Wiley Online Library.
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